



# ACADEMIC STUDIES

# **BOOK OF SUBJECTS**

# **MINING ENGINEERING**

# MASTER ACADEMIC STUDIES (II LEVEL OF ACADEMIC STUDIES)

# CONTENT

| No. | Subject                                                                          | Page |
|-----|----------------------------------------------------------------------------------|------|
| 1   | Mathematical processing of experimental data                                     | 3    |
| 2   | Technical and economic assessment of projects                                    | 4    |
| 3   | Theoretical principles of physical processes of preparation and concentration    | 5    |
| 4   | Theoretical principles of physical-chemical and chemical concentration processes | 6    |
| 5   | Sanitation and recultivation                                                     | 7    |
| 6   | Processes modeling and optimization                                              | 8    |
| 7   | Automation of technological processes                                            | 9    |
| 8   | Construction of special underground facilities                                   | 10   |
| 9   | Suspension of mining operations                                                  | 11   |
| 10  | Stability of mining facilities                                                   | 12   |
| 11  | Mining legislation                                                               | 13   |
| 12  | UG mine production planning                                                      | 14   |
| 13  | Optimisation of surface mines                                                    | 15   |
| 14  | Mineral processing design                                                        | 16   |
| 15  | Technologies for processing metallic mineral raw materials                       | 17   |
| 16  | Processing technologies of non-metallic mineral raw materials                    | 18   |
| 17  | Coal processing technologies                                                     | 19   |
| 18  | Industrial wastewater treatment                                                  | 20   |
| 19  | Design and management of municipal landfill                                      | 21   |
| 20  | Recycling of metals and metal waste                                              | 22   |
| 21  | Recycling of non-metallic waste                                                  | 23   |
| 22  | Thermal treatment of waste                                                       | 24   |
| 23  | Chemical and biological treatment of waste                                       | 25   |
| 24  | Research work on theoretical basis of the master thesis                          | 26   |
| 25  | Professional practice                                                            | 27   |
| 26  | Master's thesis                                                                  | 28   |
| 27  | Preparation and defending of master's thesis                                     | 29   |

# Course: MATHEMATICAL PROCESSING OF EXPERIMENTAL DATA

# Lecturer/s: Ivana Z. Đolović

Status of the course: Compulsory

#### ECTS: 6

# Prerequisite: /

**Course goals:** Students should be able to use appropriate mathematical and statistical concepts and tools in recognizing and solving problems

**Learning outcomes:** Students should be able to apply theoretical knowledge from statistics in recognizing and solving tasks in the sense of processing of experimental data using different and appropriate statistical tools and techniques

### **Course description:**

Lectures:

Introduction to probability. Random event. Discrete and continuous random variables and most important distributions (the binomial probability distribution; the Poisson probability distribution; the normal distribution; Student's t- distribution; the Chi-squared distribution; the F distribution); the probability density function; expected value and variance; Introduction to statistics (statistical data, frequency distribution, mean values; measures of dispersion; coefficient of skewness; Pearson's moment coefficient of kurtosis (excess kurtosis); population and sample); Confidence intervals; Hypothesis tests (selected parametric and non-parametric tests); Regression analysis( linear regression; exponential regression; logarithmic regression) Practice:

Calculation exercises and application in real problems (with and without some statistical packages - advantages and disadvantages)

#### Literature:

Recommended:

1. I.Đolović, Statistika, Univerzitet u Beogradu, Tehnički fakultet u Boru, Bor, 2016.

2. I.Đolović, Zbirka zadataka iz statistike, Univerzitet u Beogradu, Tehnički fakultet u Boru, Bor, 2011. Ancillary:

1. Mann S.P., Uvod u statistiku (srpsko izdanje), Centar za izdavačku delatnost Ekonomskog fakulteta, Beograd, 2009.

2. Mann S.P., Introductory Statistics (many editions in English)

| Number of classes per week | Lectures: 2 | Practical classes: 2 | Study<br>research<br>work: / | Other forms of<br>teaching: / |
|----------------------------|-------------|----------------------|------------------------------|-------------------------------|
| Teaching methods           |             | •                    | •                            |                               |

### **Teaching methods**

Frontal teaching for theoretical knowledge and group, individual and combined learning in practical parts of lessons (students engagement through active learning – applications and discussions)

| Knowledge evaluation (maximum 100 points) |        |                                      |        |  |  |
|-------------------------------------------|--------|--------------------------------------|--------|--|--|
| Pre-examination<br>obligations            | Points | Final exam                           | Points |  |  |
| Lecture attendance                        | 1      | Written part<br>of the final<br>exam | 50     |  |  |
| Exercise attendance                       | 1      | Oral part of the final exam          | /      |  |  |
| Coloquium exam/s                          | 30     |                                      |        |  |  |
| Term paper                                | 20     |                                      |        |  |  |

Naziv predmeta: Technical and economic assessment of projects

# Lecturer: dr Dejan T. Riznić, red. prof., dr Saša S. Stojadinović, van. prof.

Course status: Obligatory

# **ECTS:** 6

# Prerequisites: Passed exam on Economics and Business Organization

# Course goal

Introducing students to the basics of the procedure and manners of performing technical and economic assessment of projects in order to determine the viability of the project.

# Course outcome

Ability to make independent and qualified consideration of the possible impacts, social, economic, technical, environmental and other, to viability of the project execution.

# Course description

Theoretical:

The basics of business economics. Costs, Cost structure, Investment costs, fixed costs, variable costs, concept of depreciation, cost calculation, discounting, project value determination, Net Present Value, Internal Rate of Return, Planned investments, Investment dynamics. Types of technical and economic grades, TEA of mineral deposits, Preliminary economic assessment, Preliminary feasibility study, Feasibility study, Due Diligence analysis. Base case assessment, cost-benefit base case analysis, Project case assessment, cost-benefit project case analysis, *Practicals:* 

Computational exercises that accompany the lecture program

### Literatura

D. Riznić, R. Nikolić, Ekonomika i organizacija poslovanja, TF Bor, Bor, 2017.

V. Stefanović, R. Nikolić, Ekonomika i organizacija preduzeća, PMF, Niš, 2000.

Begg. D, Ward. D, Economic for bussiness, McGraw-Hill Higher education 2006.

M. Savić, M. Bugarin, Modeliranje ležišta sa procenom resursa i planiranjem otkopavanja na površinskim kopovima, IRM Bor, Bor, 2019.

Ian C. Runge, Mining economic and strategy, SMME, Littleton, USA, 1998.

| Number of classes per weak      | Theoretical: 2 | Practical: 2      |        |
|---------------------------------|----------------|-------------------|--------|
| Lecture methods                 |                |                   |        |
| Predavanja, Vežbe               |                |                   |        |
| Grading system (Maximum of 1    | 00 points)     |                   |        |
| Prerequisits                    | points         | Final examination | points |
| Active participation / lectures | 10             | written exam      | 20     |
| Active participation/exercises  | /              | oral exam         | 30     |
| colloquium                      | 20             |                   |        |
| Assignment                      | 20             |                   |        |

Course: Theoretical principles of physical processes of preparation and concentration

Lecturer/s: Lecturer/s: PhD. Milan Ž. Trumić, full professor, PhD. Jovica M. Sokolović, full professor Status of the course: Elective for PMS and RTOR modules

# ECTS: 9

Prerequisite: Acquired knowledge at undergraduate academic studies on PMS and RTiOR modules

**Course goals:** Acquiring of students with theoretical principles of physical processes of preparation and concentration of mineral or secondary raw materials.

**Learning outcomes:** Enabling students for independent scientific research paper in the field of physical processes of preparation and concentration or continuing training in this field.

#### **Course description:**

Lectures: Theoretical principles of comminution raw materials. Calculation of mass movement schemes and introduction with typical schemes of comminution and classification of raw materials. Liberation of the minerals and particle-size of mineral raw material. Mathematical models of liberation of the minerals. Theoretical basses of comminution. Laws of comminution. Theory of crushing and grinding processes. Kinetics of grinding bodies-the grinding medium. Grinding kinetics. Choice of grinding mill. Bond work index. Theoretical principles of classification of raw materials. Theoretical foundations of the screening process. Study of the parameters that characterize the screening process. Kinetics of screening. Study the conditions for the movement of raw materials on the sifting surface. Choice of sieves. Theoretical foundations of the classification process. Theoretical principles of operation of devices for hydraulic and air classification. Study the performance indicators of the classifier. Theoretical principles of gravity methods of concentration. Theoretical principles of grain stratification in fluids. Theoretical principles of operation of separators with suspensions for gravity concentration. The minimum (critical) grain diameter in the gravity concentration process. Theoretical principles of gravitational concentration in water. Phases of grain movement. Analysis of forces during movement of grains down an oblique plane in a thin layer of water. Analysis of the forces during grain movement in the working section of the sedimentation machine. Theoretical principles of control of gravitational concentration processes . Methods of predetermining the results of the concentration of raw materials. Theoretical principles of magnetic concentration methods. Theoretical principles of operation of magnetic separators. Theoretical analysis of forces in the process of magnetic concentration. Minimum (critical) grain diameter in the process of magnetic concentration. Magnetohydrodynamic and magnetohydrostatic separation of minerals. Theoretical principles of electrical concentration methods. Theoretical principles of operation of electrostatic separators. Theoretical analysis of the forces acting on grains of different electrical conductivity in the separation zone of the separator. The minimum (critical) grain diameter in the electrical concentration process.

Practice: Laboratory and computational exercises and other forms of teaching.

# Literature:

- 1. Magdalinović, N. (1999). Comminution and classification, Nauka, Belgrade.
- 2. Magdalinović, N. (1985). Crushing and classification of mineral raw materials practical course, Technical Faculty in Bor, Bor.
- 3. Ćalić, N. (1990). Theoretical basis of preparation of mineral raw materials, Faculty of Mining and Geology, Belgrade,
- 4. Ignjatović, M., Ignjatović, R., Trumić, M., (1999). Principles of operation of separators with suspensions, Technical Faculty in Bor, Bor.
- 5. Ignjatović, M. (1997). Magnetic separation, new trends in the preparation of mineral raw materials, Belgrade.
- 6. Svoboda, J. (2004). Magnetic techniques for the treatment of materials, Springer, 2004.

| Number of classes per week            | Lectures: 3        | Practical classes: 3      | Study research<br>work: | Other<br>forms of<br>teaching: |
|---------------------------------------|--------------------|---------------------------|-------------------------|--------------------------------|
| Teaching methods                      |                    |                           |                         |                                |
| Theoretical teaching is conducted t   | hrough lectures,   | and practical in the forr | n of exercises based    | on an                          |
| interactive principle with active par | rticipation of stu | dents and preparation of  | f a term paper.         |                                |
| Knowledge evaluation (maximun         | n 100 points)      |                           |                         |                                |
| Pre-examination obligations           | Points             | Final exam                |                         | Points                         |
| Lecture attendance                    | 10                 | Written part of           | the final exam          | 20                             |
| Exercise attendance                   | 10                 | Oral part of the          | final exam              | 40                             |
| Coloquium exam/s                      |                    |                           |                         |                                |
| Term paper                            | 20                 |                           |                         |                                |

Level of study: Master Academic Studies

# Course: THEORETICAL PRINCIPLES OF PHYSICAL-CHEMICAL AND CHEMICAL CONCENTRATION PROCESSES

Lecturer/s: Dr Maja Trumić, Associate Professor, Dr Grozdanka Bogdanović, Full Professor

Status of the subject: Obligatory subject

# **ECTS:** 9

Prerequisite: Acquired knowledge from the subject of Flotation and Leaching and Solutions Processing

**Course goals:** Introducing students with theoretical and fundamental principles on which flotation concentration and chemical processes of concentration are based.

**Learning outcomes:** Theoretical and practical training of students for work in educational and scientific research institutions as well as in the practice of flotation concentration and chemical concentration processes (leaching).

### **Course description:**

*Lectures:* Flotation: INTRODUCTION (phenomena in the flotation system, definitions and terminology) PULP PHASE (solid phase: mineral crystalline structure and types of bonding in crystal lattice, crystal defect, hydrophobic and hydrophilic solid surfaces, liquid phase: physical and chemical water properties, chemical composition of natural waters, gaseous phase: air and gases used in flotation - SO<sub>2</sub> and N, and their physical and chemical characteristics), PHASE BOUNDARY - INTERFACE (phenomenon on phase boundary, electrokinetic potential, electrode potential, dual electric layer, hydration and hydrolysis, ion exchange), FLOTATION REAGENTS (adsorption of surfactants at the three-phase wetting interface); LEACHING: Physico-chemical basis of the leaching processes. Chemical and electrochemical reactions. Potential-pH equilibrium diagrams. Leaching kinetics: rate, order of reaction and influence of temperature. Reactions at the solid surface and geometric models selection: diffusion controlled reactions; chemically controlled reactions; complex reaction kinetics. Leaching agents. Metals leaching. Leaching of primary raw materials (oxide, carbonate, silicate and sulphide minerals). Leaching of technogenic raw materials (mining tailings, flotation tailings, dusts and sludges). Leaching of solid waste and ash of incinerators. The role of microorganisms in the process of leaching. Methods of leaching and equipment. Heap, dump and in-situ leaching.

*Practice:* Practical teaching is carried out in laboratories in the form of experimental and calculus exercises, and according to the theoretical teaching program.

# Literature

Recommended:

1. M. M. Gifing, Stages of flotation pulp, RGF, Belgrade, 1986.

2. S. Milošević, Flotation concentration, TF, Bor, 1995.

3. M. R. Vujasinović, V. Grekulović, Theory of Hydro and Electrometallurgical Processes, Bor, 2017

4. N. Pacović, Hydrometallurgy, ŠRIF, Bor, 1980.

5. G.D. Bogdanović, M.M. Antonijević, Behavior and oxidation of chalcopyrite in an aqueous environment, Technical Faculty, Bor, 2011.

6. F. Habashi, A Textbook of Hydrometallurgy, Metallurgie Extective Quebec, Enr., 1992

7. J.Solyom, Fundamentals of the Physics of Solids. Springer, 2009..

8. A.W.Adamson, Physical Chemistry of Surfaces, John Wiley&Sons, Inc., 1997,

9. J. Drzymala, Mineral Processing, Foundations of theory and practice of minerallurgy, Wroclaw University of Technology, Wroclaw 2007

10. H. Ibach, Physics of Surfaces and Interfaces, Springer, 2006.

| 10. 11. Ibach, 1 hysics of Surfaces and interfaces, Springer, 2000. |                                                  |                             |                            |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------|-----------------------------|----------------------------|--|--|--|
| Number of classes per week                                          |                                                  | Lectures: 3                 | Exercises: 3               |  |  |  |
| Teaching methods: Lectures                                          | with interactive work                            | with students, practical we | ork through laboratory and |  |  |  |
| computational exercises. Pre-e                                      | xamination of knowledg                           | ge through two colloquiums  | and seminar work           |  |  |  |
| Kn                                                                  | Knowledge evaluation (max. number of points 100) |                             |                            |  |  |  |
| Pre-examination                                                     | Points                                           | Final exam                  | Points                     |  |  |  |
| obligations                                                         |                                                  |                             |                            |  |  |  |
| Lecture attendance                                                  | 5                                                | Written exam                |                            |  |  |  |
| Exercise attendance                                                 | 10                                               | Oral exam                   | 50                         |  |  |  |
| Colloquium 1+2                                                      | 10+10                                            |                             |                            |  |  |  |
| Term paper                                                          | 15                                               |                             |                            |  |  |  |
|                                                                     |                                                  |                             |                            |  |  |  |

Course: Sanitation and recultivation

Lecturer/s: PhD. Jovica M. Sokolović, full professor

Status of the course: Elective course on ELMS, PMS and RTOR modules

# ECTS: 6

Prerequisite: Acquired knowledge at undergraduate academic studies

**Course goals:** Training students in technologies and equipment used for sanation and reclamation in general, and in mining in particular.

**Learning outcomes:** The ability of the student to make a qualified decision on the choice of technology and equipment for sanation and recultivation and to be able to calculate their basic parameters.

#### Course description:

**Lectures:** Introductory remarks. Historical development, significance, condition and trends in the field of sanation and reclamation. Basic concepts and terms. Standards and legislation in the field of rehabilitation and reclamation. Technologies for rehabilitation of degraded areas. Reclamation technologies. Technical reclamation. Biological reclamation. Care and maintenance of the reclaimed area.

**Practice:** Preparation of a term paper related to rehabilitation and recultivation.

# Literature:

#### Recommended:

Pavlović, V., (2000). Reclamation of surface mines and landfills, Faculty of Mining and Geology, Belgrade.
 Vujić, S., Cvejić, J., I. Miljanović, I., Dražić, D., (2009). Designing recultivation and landscaping of surface mines (monograph), Faculty of Mining and Geology, Belgrade.

3. Dražić, D., (2002). Multifunctional valorization of the landscape and ecosystem created by the reclamation of the surface mine disposal site of the Kolubara basin, Federal Secretariat for Labour, Health and Social Welfare, Sector for the Environment, Belgrade.

4. Đorđević-Miloradović, J., Miloradović, M., Savić, N., (2012). Recultivation and greening of tailings and ash dumps in Kostolac (II edition), Požarevac.

5. Žikić, M., Sokolović, J., (2018). Sanation and land reclamation (authorized lectures), University of Belgrade, Faculty of Engineering, Bor.

| Number of classes per week | Lectures: 3 | Practical classes: 2  | Study research | Other forms  |
|----------------------------|-------------|-----------------------|----------------|--------------|
| Number of classes per week | Lectures. 5 | T Tactical Classes. 2 | work:          | of teaching: |

# **Teaching methods**

Teaching is conducted in the form of lectures and auditory exercises with an effort to involve the students as much as possible, i.e. to be interactive. This is realized directly in classes or in the form of presentations, which have been previously prepared by a team of students or individually. In the lectures, the theoretical part of the material is presented with constant illustration with characteristic examples from practice. During the exercises, specific cases are analyzed and instructions are given regarding the preparation of the term paper. Teaching and exercises are intensively supported by Moodle platform. Engagement of students in lectures and exercises, as well as prepared term paper, are scored as pre-exam activities.

# Knowledge evaluation (maximum 100 points)

| Knowledge evaluation (maximum 100 points) |        |                                |        |  |  |
|-------------------------------------------|--------|--------------------------------|--------|--|--|
| Pre-examination obligations               | Points | Final exam                     | Points |  |  |
| Lecture attendance                        | 10     | Written part of the final exam |        |  |  |
| Exercise attendance                       | 10     | Oral part of the final exam    | 60     |  |  |
| Coloquium exam/s                          | 1      |                                |        |  |  |
| Term paper                                | 20     |                                |        |  |  |

# **Course: PROCESSES MODELING AND OPTIMIZATION**

Lecturer: Dr Dejan Petrović, assistant professor

Status of the course: Elective for EMD Module

# ECTS: 6

**Prerequisite:** Knowledge of Mathematics and understanding of mining processes

**Course goals:** Understanding of the modeling and optimization methods and their application to mining, mineral processing or recycling processes

Learning outcomes: Individual competencies for decision making and management in mining, mineral processing or recycling related processes.

# **Course description:**

Lectures:

Introduction, Formulation of mathematical models. Linear programming. Basic terminology. Convex sets.

Limiting set allowed domain. Geometric interpretation of linear programming problem. General shape of linear programming model and its properties. Standard shape of LP model and its general solutions. Simplex method. Duality in LP. Sensibility analysis. Transportation problem. Problem formulation. Closed model of transportation problem. Initial allowed solution. Optimum solution of transportation model. Open model of transportation problem. Prohibited route transportation problem. Activity executors selection. Network planning. Project activities and Gantt chart. Structure analysis. Time analysis. Time and cost analysis Practice:

Practical use of LP and Network planning techniques to solve modeling and optimization problems.

#### Literature:

Recommended:

- 1. M.Vujošević, M. Stanojević, N. Mladenović, Metode optimizacije, Društvo operacionih istraživača Jugoslavije, Beograd, 1996.
- 2. S. Krčevinac, M. Čangalović, V. Kovačević-Vujčić, M. Martić, M. Vujošević, Operaciona istraživanja, Fakultet organizacionih nauka, Beograd, 2006.
- 3. M. Perišić, Linearni modeli optimizacije i odlučivanja u rudarstvu, Rudarski institut, Beograd, 1986

| Number of classes per week                               | Lectures: 3 | Practical classes: 2 | Study research work: | Other<br>forms of<br>teaching: |  |  |  |
|----------------------------------------------------------|-------------|----------------------|----------------------|--------------------------------|--|--|--|
| Teaching methods                                         |             |                      |                      |                                |  |  |  |
| Oral lectures, calculation tasks, dis                    | cussion     |                      |                      |                                |  |  |  |
| Knowledge evaluation (maximum 100 points)                |             |                      |                      |                                |  |  |  |
| Pre-examination obligations                              | Points      | Final exam           |                      | Points                         |  |  |  |
| Lecture attendance                                       | 10          | Written part of      | f the final exam     | 60                             |  |  |  |
| Exercise attendance <b>5</b> Oral part of the final exam |             |                      |                      |                                |  |  |  |
| Coloquium exam/s                                         | 25          |                      |                      |                                |  |  |  |
| Term paper                                               |             |                      |                      |                                |  |  |  |

#### Course: AUTOMATION OF TECHNOLOGICAL PROCESSES

Lecturer/s: Dr. Zoran Stević, full professor

Status of the course: Elective for all modules

# ECTS: 6

# Prerequisites: None

**Course goals:** Acquiring knowledge about systems for controlling and monitoring of industrial processes. Acquiring skills about designing advanced controlling systems that can be implemented in industrial processes

**Learning outcomes:** Students should master the techniques of industrial process control system design using computers, through practical work in the laboratory with application in real industrial processes.

#### **Course description:**

Lectures:

Control of complex technological processes. Centralized control. Distributed control. Hierarchical control. Application of computers for real-time process control. Computer system in control with and without feedback. Connecting the computer to the control object. Types of computer-process coupling. Input/output devices. Software support for control in real-time systems. The use of microcomputers in the design and implementation of control systems. Functions and organization of programmable logic controllers (PLC). Typical input/output modules of programmable logic controllers. Concept of acquisition and control (SCADA) systems. Practical application of PLC and SCADA systems in process control. Distributed control systems. Industrial computer networks. Remote monitoring and process control.

#### Practice:

Through practical exercises in the laboratory, research work and the development of applications for visualization and monitoring of industrial processes, students process the methodological units that are given in within theoretical teaching.

#### Literature:

1. V. Drndarević, Personalni računari u sistemima merenja i upravljanja, Akademska misao, Beograd, 2003.

2. S. Turajlić, Upravljanje industrijskim procesima, skripta, Elektrotehnički fakultet, Univerzitet u Beogradu, Beograd, 2011.

3. K. Astrom, J.Wittenmark, Computer Controlled Systems, Pearson, 1996.

| Number of classes per<br>week | Lectures: 3     | Practical classes: 2 | Study research<br>work: None | Other forms of teaching: None |  |  |  |  |
|-------------------------------|-----------------|----------------------|------------------------------|-------------------------------|--|--|--|--|
| Teaching methods              |                 |                      |                              |                               |  |  |  |  |
| Knowledge evaluation (ma      | aximum 100 poin | ts)                  |                              |                               |  |  |  |  |
| Pre-examination obligations   | Points          | Final e              | xam                          | Points                        |  |  |  |  |
| Lecture attendance            | 10              | Written              | part of the final exam       | n /                           |  |  |  |  |
| Exercise attendance           | 40              | Oral pa              | rt of the final exam         | 50                            |  |  |  |  |
| Coloquium exam/s              | /               |                      |                              |                               |  |  |  |  |
| Term paper                    | /               |                      |                              |                               |  |  |  |  |

# Course: CONSTRUCTION OF SPECIAL UNDERGROUND FACILITIES

Lecturer/s: dr Dragan Zlatanović, assistant professor

Status of the course: Compulsory for ELMS students...

ECTS: 8

Prerequisite: Undergraduate studies

# **Course goals:**

Introduction to special underground facilities construction techniques, technological phases and rock behavior.

#### Outcome of the course

Individual competences for special underground facilities design.

# **Course description:**

Lectures:

Introductory remarks. Historic development, definitions and classification of underground facilities. Geology conditions and tunneling operations. Dimensioning: Railroad tunnels. Subways. Road tunnels. Hydrotechnical tunnels. Underground chambers. Support calculation.

Construction methods: General. Drill and blast tunneling. Mechanized tunneling. Chamber construction methods.

Concrete. Underground concrete works and paving.

Practice: Mine visits

Practicals: Calculation tasks, Support calculation. Scheduling. Equipment selection. Design.

### Literature:

Recommended:

1. P. Jovanović, Izrada podzemnih prostorija velikog profila, Građevinska knjiga, Beograd, 1984.

# Ancillary:

1. V.Milić, Ž.Milićević, Osnovi eksploatacije ležišta mineralnih sirovina, Tehnički fakultet, Bor

| Number of classes per week                   | Lectures: 3 | Practical classes: 2 | Study research work: ? | Other<br>forms of<br>teaching:<br>? |  |  |  |
|----------------------------------------------|-------------|----------------------|------------------------|-------------------------------------|--|--|--|
| Teaching methods                             |             |                      |                        |                                     |  |  |  |
| Oral lectures, calculation tasks, discussion |             |                      |                        |                                     |  |  |  |
| Knowledge evaluation (maximum 100 points)    |             |                      |                        |                                     |  |  |  |
| Pre-examination obligations                  | Points      | Final exam           |                        | Points                              |  |  |  |

| Pre-examination obligations | Points | Final exam                     | Points |
|-----------------------------|--------|--------------------------------|--------|
| Lecture attendance          | 5      | Written part of the final exam |        |
| Exercise attendance         | 25     | Oral part of the final exam    | 70     |
| Coloquium exam/s            |        |                                |        |
| Term paper                  |        |                                |        |

Course: SUSPENSION OF MINING OPERATIONS

Lecturer: Vušović M. Nenad

Status of the course: elective for ELMS module students

# ECTS: : 6

**Prerequisite:** It is not intended

**Course goals:** Acquaintance of students with the technology and equipment that is used in case of suspension of work in mines, along with the calculation of basic parameters

**Learning outcomes:** The ability of the student to make qualified decisions about the choice of technology and equipment for the needs temporary or permanent suspension of mining operations

#### **Course description:**

Lectures:

Introductory remarks. Historical development, significance, state and trends related to the suspension of mining operations. Basic concepts and terms. Regulations regarding the suspension of mining operations. Temporary suspension of mining operations. Permanent suspension of mining operations. Abandoned mines and mining facilities. Rehabilitation and reclamation of mines after the suspension of mining operations. Reconstruction of mining works and facilities.

Practice: Preparation of a seminar paper related to the temporary or permanent suspension of mining works, for a given mine, with the calculation of technological stages

# Literature:

Recommended:

- 2. Жикић М., Стојадиновић С., Стандарди, законска регулатива и техничка документација у рударству, Технички факулет у Бору, Бор (2018).
- 3. Павловић В., Технологија површинског откопавања експлоатације, Рударско-геолошки факултет, Београд, 1992.
- 4. Милићевић Ж., Милић В., Технологија подземне експлоатације лежишта минералних сировина, Технички факултет у Бору, Бор, (2013).
- 5. Павловић В., Рекултивација површинских копова и одлагалишта, Рударско-геолошки факултет, Београд, (2000).
- 6. Вујић С., Миљановић И., Цвејић Ј., Дражић Д., Пројектовање рекултивације и уређење предела површинских копова. Рударско-геолошки факултет, Београд (2009).

Ancillary:

- 7. Закони и подзаконски акти у непосредној и посредној вези са рударством (2015)
- 8. Збирка прописа за полагање општег дела стручног испита из области рударства и геологије (друго измењено и допуњено издање), Савез инжењера и техничара Србије, Београд (2017).

| Number of classes per week                                                                                      | Lectures: 2 | Practical classes: 2           | Study research<br>work: 0 | Other forms<br>of teaching: 0 |  |
|-----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|---------------------------|-------------------------------|--|
| Teaching methods lectures through presentations ( <u>https://moodle.tfbor.bg.ac.rs</u> ), followed by exercises |             |                                |                           |                               |  |
| Knowledge evaluation (maximum 100 points)                                                                       |             |                                |                           |                               |  |
| Pre-examination obligations                                                                                     | Points      | Final exam         Points      |                           | Points                        |  |
| Lecture attendance                                                                                              |             | Written part of the final exam |                           |                               |  |
| Exercise attendance                                                                                             |             | Oral part of the final exam 60 |                           | 60                            |  |
| Term paper                                                                                                      | 40          |                                |                           |                               |  |

**Course: STABILITY OF MINING FACILITIES** 

Lecturer/s: Dr Radoje Pantović, full professor

Status of the course: Elective

## ECTS: 6

Prerequisite: Passed the Rock and Soil Mechanics exam

**Course goals:** Acquaintance of students with the causes of underground pressure, methods of forecasting and measurement of underground pressure and room deformations, as well as understanding the procedure for choosing the appropriate substructure of the mine room.

**Learning outcomes:** Students should acquire knowledge about the influence of the construction of mine rooms on the disruption of the natural stress state, theoretical methods of determining stress-deformation states around the mine room, field methods of measuring forces, stresses, deformations and displacements. Based on the above, students should evaluate the stability of a certain mine room and choose the type and load-bearing capacity of the appropriate substructure.

#### **Course description:**

Lectures: Stress state of the uninitiated rock massif. Stress distribution around the constructed mine room of different shape and orientation in space, in the cracked and in the elastic environment. Underground pressures due to physical and chemical processes. Swelling pressures. Grobb's Law of Swelling. Theories of relief vault. Substructure theories. Classifications of rock massifs are significant from the perspective of assessing the stability of mine premises. Classification of RQD. Q classification. Rabcevic's classification for the application of anchoring. Talobre's classification. Lauffer's classification. Dynamic manifestation of underground pressures. Measurements aimed at determining and controlling underground pressures. Direct measurement of underground pressure. Convergence measurement. Measurement of voltage in the substructure, i.e. cladding. Pressure cells. Measurement of forces in anchors. Measurement of forces in pulleys. Measurement of rock mass deformations with extensometers. The choice of substructure type depends on the predicted dynamics of voltage changes and deformations around the room.

Practice: Development of a model of the stress-deformation behavior of the rock mass around the mine room using appropriate software. Calculation of stresses and deformations around corridors, manholes, manholes, in different working environments. Evaluation of the influence of the weather factor on the stability of the room. Safety factor calculation. Subgrade selection.

# Literature:

Recommended:

1. M. Stević, Mehanika tla i stijena, RGF, Tuzla, 1991.

2. B. Kujundžić, Osnove mehanike stena, Građevinski kalendar, 1979.

Ancillary:

3. E. Hoek , Practical Rock Engineering, 2000. www.rocscience.com/hoek/PracticalRockEngineering.asp

| 4. | E. Hoek. | Р.К. І | Kaiser. | W.F. | Bawden: | Sup | port of | f Undergro | ound Exca | vations | in Hai | d Rock. | 1995. |
|----|----------|--------|---------|------|---------|-----|---------|------------|-----------|---------|--------|---------|-------|
|    |          |        |         |      |         |     |         |            |           |         |        |         |       |

| Number of classes per week | Lectures: 3 | Practical classes: 2 | Study research work: | Other forms of teaching: |
|----------------------------|-------------|----------------------|----------------------|--------------------------|
|                            |             |                      |                      |                          |

| Teaching | methods |
|----------|---------|
|----------|---------|

Oral lectures, computational exercises with calculations of the stability of mine premises using software and preparation of studies

| Knowledge evaluation (maximum 100 points) |        |                             |        |  |  |
|-------------------------------------------|--------|-----------------------------|--------|--|--|
| Pre-examination obligations               | Points | Final exam                  | Points |  |  |
| Lecture attendance                        | 10     | Oral part of the final exam | 50     |  |  |
| Term paper                                | 20     |                             |        |  |  |
| Coloquium exam/s                          | 20     |                             |        |  |  |

#### Course: MINING LEGISLATION

Lecturer: dr Saša Stojadinović, van. prof.

Course status: Obligatory

# ECTS: 4

#### Prerequisites: N/A

# Course goal

Acquisition of basic knowledge of the regulations (standards and legislation) that accompany mining

#### **Course outcome**

The ability of the student to effectively search, analyze and apply regulations relating to mining.

#### **Course description**

#### Theoretical:

Introductory remarks. Historical development, significance, state and trends in the development of regulations in general and those related to mining. Basic concepts and terms. Structure and division of regulations. Standards and related documents in general and related to mining. Constitution, social and economic order of the Republic of Serbia. Working relationship. General administrative procedure. Laws and bylaws in general and in direct connection with mining. Laws and bylaws indirectly related to mining. Examples. *Practical:* 

#### N/A.

## Literature

M. Žikić, S. Stojadinović, Standardi, zakonska regulativa i tehnička dokumentacija u rudarstvu, Tehnički fakulet u Boru, Bor, 2018.

Zbirka propisa za polaganje opšteg dela stručmnog ispita iz oblasti rudarstva i geologije (drugo izmenjeno i dopunjeno izdanje), Savez inženjera i tehničara Srbije, Beograd, 2017.

Standards and related documents in direct and indirect connection with mining.

Laws and bylaws in direct and indirect connection with mining.

Additional literature as recommended by the lecturer.

| Number of classes per w | eak Teori | jska nastava: 2 | Praktična nastava: 0 |
|-------------------------|-----------|-----------------|----------------------|

#### Lecture methods

Classes are conducted in the form of lectures only with the effort to maximally involve students, i.e. to be interactive. This is realized directly in classes or in the form of presentations, which are previously prepared by a team of students or individually. The lectures present the theoretical part of the material with constant illustration of characteristic examples from practice. The teaching is intensively supported by a distance learning platform (Moodle). Students' involvement in teaching is scored as a preliminary activity.

| Grading system (Maximum of 100 points) |        |                   |        |  |  |
|----------------------------------------|--------|-------------------|--------|--|--|
| Prerequisits                           | points | Final examination | points |  |  |
| Active participation / lectures        | 30     | written exam      | /      |  |  |
| Active participation/exercises         | /      | oral exam         | 70     |  |  |
| colloquium                             | /      |                   |        |  |  |
| Assignment                             | /      |                   |        |  |  |

# Course: UG MINE PRODUCTION PLANNING

Lecturer/s: dr Dragan Zlatanović, assistant professor

Status of the course: Elective for ELMS students ...

ECTS: 8

Prerequisite: Acquired knowledge in the subject Modeling and optimization of processes

**Course goals:** Introducing students to the techniques and planning of the technological process of exploitation in mines with underground exploitation.

#### Outcome of the course

Acquiring a general understanding of planning the technological process for underground mining.

### **Course description:**

Lectures:

Planning and implementation of projects. The role of planning in the production process, managing production, and types of plans. This includes the long-term production plan, annual production plan, monthly plan, and operational planning, as well as the methods of operational planning, such as deterministic and stochastic models. Additionally, production capacity and planning of production capacities will be covered, along with the application of software for optimizing and planning pit production. Practice:

These classes will involve computational exercises that accompany the thematic areas covered in lectures.

### Literature:

Recommended:

- 1. M. Pinedo. Scheduling Theory, Algorthms and Systems. Third edition. Springer 2008. New York.
- 2. P. Jovanović. Upravljanje projektom. Deveto izdanje. Visoka škola za projektni menadžment, Beograd, 2010.
- 3. T. Mikac, D. Blažević. Planiranje i upravljanje proizvodnjom. Tehnički Fakultet u Rijeci, Rijeka 2007.
- 4. D. Malindžak. Production Logistics I. Štroffek publishing. Košice, 1998.

| Number of classes per week                           | Lectures 3   Practical classes 3      |  | Study research work: ? | Other<br>forms of<br>teaching:<br>? |  |  |
|------------------------------------------------------|---------------------------------------|--|------------------------|-------------------------------------|--|--|
| Teaching methods                                     | Teaching methods                      |  |                        |                                     |  |  |
| Lectures and practitioners                           |                                       |  |                        |                                     |  |  |
| Knowledge evaluation (maximum 100 points)            |                                       |  |                        |                                     |  |  |
| Pre-examination obligationsPointsFinal examPoints    |                                       |  |                        |                                     |  |  |
| Lecture attendance 10 Written part of the final exam |                                       |  |                        |                                     |  |  |
| Exercise attendance                                  | <b>30</b> Oral part of the final exam |  | 60                     |                                     |  |  |
| Coloquium exam/s                                     |                                       |  |                        |                                     |  |  |
| Term paper                                           |                                       |  |                        |                                     |  |  |

| Study program: Mining engineering      | ng                     |                                  |                                       |
|----------------------------------------|------------------------|----------------------------------|---------------------------------------|
| Course: OPTIMISATION OF SU             | RFACE MINES            |                                  |                                       |
| Lecturer: dr Saša S. Stojadinović      | , van. prof.           |                                  |                                       |
| Course status: Izborni predmet mo      | dula ELMS              |                                  |                                       |
| ECTS: 8                                |                        |                                  |                                       |
| Prerequisites: Completed and pass      | sed courses of Technol | ogy of surface mining and Min    | e design                              |
| Mine                                   |                        |                                  |                                       |
| Course goal                            |                        |                                  |                                       |
| Introducing students to the basics, p  | principles and procedu | res for definition and selection | of optimum open pit                   |
| outline .                              |                        |                                  |                                       |
| Course outcome                         |                        |                                  |                                       |
| The ability of students to provide a   |                        | n concrete conditions, choose    | the appropriate method                |
| and optimize the surface mine in the   | e design phase.        |                                  |                                       |
| Course description                     |                        |                                  |                                       |
| Theoretical teaching:                  |                        |                                  |                                       |
| Deposit modeling, resource evaluat     |                        |                                  |                                       |
| optimization, optimization methods     |                        |                                  |                                       |
| selection of optimal outline, criteria | for choosing the optim | nal outline. Software packages   | for modeling and                      |
| optimization of surface mines.         |                        |                                  |                                       |
| Practical classes:                     |                        |                                  |                                       |
| Computational and demonstration e      |                        |                                  | ividual work of students              |
| using software packages for design     | and optimization of su | irface mines.                    |                                       |
| Literature                             | · 1 ····               |                                  | · · · · · · · · · · · · · · · · · · · |
| 1. M. Savić, M. Bugarin, Modeli        | ranje lezista sa proce | nom resursa i planiranjem oti    | kopavanja na povrsinskim              |
| kopovima, IRM Bor, Bor, 2019.          |                        |                                  |                                       |
| Number of classes per weak             | Teorijska nastava:     | 3 Praktična na                   | astava: 3                             |
| Lecture methods                        | C 1                    |                                  |                                       |
| Lectures, Exercises, Working with      |                        |                                  |                                       |
| Grading system (Maximum of 10          |                        |                                  |                                       |
| Prerequisits                           | points                 | Final examination                | points                                |
| Active participation / lectures        | 10                     | oral exam                        | 60                                    |
| Active participation/exercises         | 10                     |                                  |                                       |
| Assignment                             | 20                     |                                  |                                       |

Course: MINERAL PROCESSING DESIGN

Lecturer/s: PhD Milan Trumić, full professor, PhD. Vladan Milošević, assistant professor

Status of the course: Elective for module MP

# ECTS: 6

**Prerequisite:** Acquired knowledge in the field of comminution and classification of materials, flotation and physical methods of concentration

#### **Course goals:**

Introducing students with basic principles of technical documentation preparation and design and equipment selection in plants for the mineral processing

#### Learning outcomes:

Acquiring basic knowledge in the field of design and preparing technical documentation

#### **Course description:**

Lectures:

Theoretical teaching: Introduction to the design of technological processes and plants. Technical documentation preparation: basic concepts and terminology, administrative and technical conditions. Documentation collection for design (collecting the data about technical characteristics of the device for equipment selection, and for the equipment supply and construction works). Defining a project task. Analysis of all phases that are an integral part of the design project of the basic technological process for the mineral raw materials concentration. Equipment selection from the catalog and preparation of technological data and substrates for other designs (mechanical, electrical, construction).

Practice:

Production of reports in the form of a technological project of the plant. Demonstration exercises with examples of project design for different plants in mineral processing.

#### Literature:

Recommended:

1. M. Trumić, I. Budić, M. Trumić, Osnovi projektovanja u PMS-u, autorizovana predavanja, Tehnički fakultet, Bor, 2008.

2. D. Salatić, D. Knežević, Tehnološke osnove projektovanja postrojenja za PMS, Rudarski institut, Beograd, 1996.

Ancillary:

1. B. Kolonja, D. Knežević, Transport u PMS-u, RGF, Beograd, 2000.

2. N. Magdalinović, M. Magdalinović-Kalinović, Upravljanje prirodnim resursima, Inorog, Bor, 2007.

| 3. Mineral Processing Handbook 7/07, Telsmith, Inc., USA, 2007. |  |
|-----------------------------------------------------------------|--|
|-----------------------------------------------------------------|--|

| Number of classes per week | Lectures: 2 | Practical classes: 2 |
|----------------------------|-------------|----------------------|
| Toophing mothods           |             |                      |

#### Teaching methods

Lectures with interactive work with students and practical in the form of demonstration exercises with the active participation of students and elaboration of the reports.

| Knowledge evaluation (maximum 1 | 00 points) |
|---------------------------------|------------|
|---------------------------------|------------|

| Pre-examination obligations | Points | Final exam                                     | Points |
|-----------------------------|--------|------------------------------------------------|--------|
| Lecture attendance          | 10     | Written part of the final exam (5 points min.) | 20     |
| Exercise attendance         | 10     | Oral part of the final exam                    | 40     |
| Coloquium exam/s            |        |                                                |        |
| Term paper                  | 20     |                                                |        |

#### Course: Technologies for processing metallic mineral raw materials

Lecturer: PhD Zoran Štirbanović, Associate Professor

Status of the course: Elective for module MP

#### ECTS: 6

Prerequisite: none

**Course goals:** Introducing students with the basic technological processes used in the processing of metallic mineral raw materials, as well as the most modern trends in this field.

**Learning outcomes:** Teaching students to independently create technological processes for the processing of metallic mineral raw materials, in accordance with the latest trends in this field and the basic principles of sustainable development.

#### **Course description:**

*Lectures:* Introduction. Industrial processes for the processing of metallic mineral raw materials. Comminution processes (crushing and grinding). Classification processes (sieving and classification). Concentration processes (flotation, gravity concentration, magnetic concentration, electric concentration, leaching). Application of the process of preparation and concentration in technologies for the processing of metallic mineral raw materials: ores of non-ferrous metals (copper, lead, zinc, nickel, antimony, tin), ores of ferrous metals (iron, chromium and manganese), ores of light and rare metals, ores of precious metals (gold, silver, platinum and palladium). Technological indicators and control of industrial processes. Material balancing of processes. Contemporary trends in the field of technologies for the processing of metallic mineral raw materials. Sustainability of the process of processing metallic mineral raw materials. Economic assessment. Environmental impact assessment.

*Practice:* Practical work is conducted according to the program of theoretical lectures and include:

a) creation of technological schemes for the processing of metallic mineral raw materials based on the given characteristics of the raw material, and in accordance with the most modern trends and basic principles of sustainable development.

b) Calculation exercises: Determination of the material balance of technological schemes. Technological indicators and process control.

### Literature:

Recommended:

- 1. D. Draškić, Industrial application of mineral processing, Book I, Student Publishing and Information Center, Belgrade, 1975. (In Serbian)
- 2. D. Draškić, Industrial application of mineral processing, Book II, Faculty of Mining and Geology, Belgrade, 1986. (In Serbian)

Ancillary:

- C. G. Anderson, R. C. Dunne, J. L. Uhrie, (Eds.) Mineral Processing and Extractive Metallurgy : 100 Years of Innovation, Society for Mining, Metallurgy & Exploration (SME), Englewood, Colorado, USA, 2014.
- 2. A. Gupta, D. S. Yan, Mineral Processing Design and Operation: An Introduction, 1<sup>st</sup> edition, Elsevier, Amsterdam, Netherlands, 2006.
- 3. B. A. Wills, T. Napier-Munn, Wills' Mineral Processing Technology : An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 7<sup>th</sup> edition, Elsevier, Oxford, UK, 2006.

| Number of classes per week | Lectures: 2 | Practical classes: 2 | Study research work: | Other<br>forms of<br>teaching: |
|----------------------------|-------------|----------------------|----------------------|--------------------------------|
|                            |             |                      |                      |                                |

# **Teaching methods**

Lectures include interactive work with students, practical work through example analysis and computational exercises. Pre-exam knowledge check through one colloquium and one term paper.

| Knowledge evaluation (maximu | m 100 points) |                                |        |
|------------------------------|---------------|--------------------------------|--------|
| Pre-examination obligations  | Points        | Final exam                     | Points |
| Lecture attendance           | 15            | Written part of the final exam |        |
| Exercise attendance          | 15            | Oral part of the final exam    | 50     |
| Coloquium exam/s             | 10            |                                |        |

|--|

| Study program: Mining Engineer                                                                                                                                                                                                   | ina                 |                                         |                            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|----------------------------|--|--|--|
|                                                                                                                                                                                                                                  |                     | NON-METALLIC MINERAL RA                 | WMATERIALS                 |  |  |  |
|                                                                                                                                                                                                                                  |                     |                                         |                            |  |  |  |
| Lecturer/s: Dr Maja Trumić, Associate Professor, Dr Vladan Milošević, Assistant Professor<br>Status of the course: Elective subject, module MP                                                                                   |                     |                                         |                            |  |  |  |
| ECTS: 6                                                                                                                                                                                                                          |                     |                                         |                            |  |  |  |
|                                                                                                                                                                                                                                  | e acquired in the s | study program Mining Engineering        |                            |  |  |  |
|                                                                                                                                                                                                                                  |                     | ents with technologies for the proc     | essing of non-metallic     |  |  |  |
|                                                                                                                                                                                                                                  |                     | lication of procedures for the prepa    |                            |  |  |  |
|                                                                                                                                                                                                                                  |                     | familiarize students with the param     |                            |  |  |  |
| processes that are of essential impo                                                                                                                                                                                             | ortance for the ch  | oice of these processing technologie    | es, i.e. starting from the |  |  |  |
|                                                                                                                                                                                                                                  |                     | ial and its characteristics (physica    |                            |  |  |  |
|                                                                                                                                                                                                                                  |                     | nd its applicability - applicability of |                            |  |  |  |
|                                                                                                                                                                                                                                  |                     | d user requirements; familiarization    |                            |  |  |  |
|                                                                                                                                                                                                                                  | i technological, e  | conomic and ecological effects that     | are realized by applied    |  |  |  |
| processing technologies.                                                                                                                                                                                                         | 1 1 6 1             |                                         |                            |  |  |  |
|                                                                                                                                                                                                                                  |                     | coretical and practical principles of   |                            |  |  |  |
|                                                                                                                                                                                                                                  |                     | nd the ability to apply that knowled    |                            |  |  |  |
|                                                                                                                                                                                                                                  |                     | ges of the process. The acquired kno    | wiedge forms the basis     |  |  |  |
| for further individual training in the <b>Course description:</b>                                                                                                                                                                | no arca.            |                                         |                            |  |  |  |
|                                                                                                                                                                                                                                  | out Technologies    | for the processing of non-metallic      | mineral raw materials.     |  |  |  |
|                                                                                                                                                                                                                                  |                     |                                         |                            |  |  |  |
| talc, pyrophyllite, zeolite, mica, feldspar, fluorite, dolomite, bentonite, clay, quartz sand limestone, basalt, magnesite, wollastonite, barite, white bauxite, dunite, borate, and raw materials for the construction, ceramic |                     |                                         |                            |  |  |  |
| and new materials industry based on non-metallic mineral raw materials. Practical classes-exercises:                                                                                                                             |                     |                                         |                            |  |  |  |
| Laboratory exercises (experimental and theoretical); familiarization with all stages of the process preparation                                                                                                                  |                     |                                         |                            |  |  |  |
| of some non-metallic mineral raw materials: zeolite (crushing, grading), feldspar-mica (flotation                                                                                                                                |                     |                                         |                            |  |  |  |
| concentration), quartz sand (grading, attrition).                                                                                                                                                                                |                     |                                         |                            |  |  |  |
| Literature                                                                                                                                                                                                                       |                     |                                         |                            |  |  |  |
|                                                                                                                                                                                                                                  |                     | THEIR USES, Copyright @ 1996            | by Noyes Publications,     |  |  |  |
| Library of Congress Catalog Card Number: 96-29173<br>2. J. Pavlica, D. Draškić: Preparation of non-metallic mineral raw materials, Mining and geological faculty,                                                                |                     |                                         |                            |  |  |  |
| Belgrade, 1997.                                                                                                                                                                                                                  |                     |                                         |                            |  |  |  |
| 3. Domestic non-metallic mineral raw materials for use in the economy, Editor: Siniša Milošević, ITNMS,                                                                                                                          |                     |                                         |                            |  |  |  |
| 5. Domestic non-metallic mineral raw materials for use in the economy, Editor: Sinisa Milosevic, ITNMS,<br>Belgrade, 1998.                                                                                                       |                     |                                         |                            |  |  |  |
| 4. Lj. Andrić: "Production of non-metallic mineral raw materials", Chapter in the monograph: "Mineral raw                                                                                                                        |                     |                                         |                            |  |  |  |
| material complex of Serbia today: challenges and crossroads", Academy of Engineering Sciences of Serbia                                                                                                                          |                     |                                         |                            |  |  |  |
| (AINS), Faculty of Mining and Geology, University of Belgrade, Chamber of Commerce of Serbia,, 2010,                                                                                                                             |                     |                                         |                            |  |  |  |
| Belgrade, pp. 189-202.                                                                                                                                                                                                           |                     |                                         |                            |  |  |  |
| 5. Lj. Andrić Preparation of non-metals in Serbia, Chapter in the monograph: Status and perspectives                                                                                                                             |                     |                                         |                            |  |  |  |
| preparation of mineral raw materials in Serbia, Engineering Academy of Serbia, Belgrade, pp. 39-60                                                                                                                               |                     |                                         |                            |  |  |  |
| 6. Lj. Andrić:Situation and perspectives of non-metallic mineral resources in Serbia, Chapter in Monography:Einsfighting today and tomorrow. Association of Matallurgical Engineers, 2013, 65, 81                                |                     |                                         |                            |  |  |  |
| Monographs:Firefighting, today and tomorrow, Association of Metallurgical Engineers, 2013, 65-81.                                                                                                                                |                     |                                         |                            |  |  |  |
| 7. Lj. Andrić, editor of the chapter: "Exploitation of non-metallic mineral raw materials", in the monograph:<br>"Serbian mining and geology in the second half of the 20th century", Academy of Engineering Sciences of         |                     |                                         |                            |  |  |  |
| Serbia, Matica Srpska, Mining Institute, p.413-461, 2014.                                                                                                                                                                        |                     |                                         |                            |  |  |  |
| 8. Lj. Andric, D. Radulović, M. Petrov, Non-metallic mineral raw materials as a basis of the long-term                                                                                                                           |                     |                                         |                            |  |  |  |
| development of the economy of Serbia, IX Colloquium on the preparation of mineral raw materials,                                                                                                                                 |                     |                                         |                            |  |  |  |
| Department of preparation of mineral raw materials, University of Belgrade, Faculty of Mining and                                                                                                                                |                     |                                         |                            |  |  |  |
| Geology, Belgrade, 2018, pp.5                                                                                                                                                                                                    |                     |                                         |                            |  |  |  |
| Number of classes per week                                                                                                                                                                                                       |                     | Lectures: 2                             | Practical classes: 2       |  |  |  |
| Methods of teaching: Audio-visu                                                                                                                                                                                                  |                     |                                         |                            |  |  |  |
| Kno                                                                                                                                                                                                                              | wledge rating (r    | nax. number of points 100)              |                            |  |  |  |
| Pre-examination obligations                                                                                                                                                                                                      | points              | Final examination                       | points                     |  |  |  |
| Lecture attendance                                                                                                                                                                                                               | 10                  | Written part of the final exam          |                            |  |  |  |
| Exercise attendance                                                                                                                                                                                                              | 10                  | Oral part of the final exam             | 50                         |  |  |  |
| Coloquium exam/s                                                                                                                                                                                                                 | 10                  |                                         |                            |  |  |  |
| Seminars                                                                                                                                                                                                                         | 20                  |                                         | 1                          |  |  |  |

**Course: Coal processing technologies** 

# Lecturer/s: PhD. Jovica M. Sokolović, full professor

# Status of the course: Elective course on PMS module

# ECTS: 6

Prerequisite: Acquired knowledge at undergraduate academic studies

**Course goals:** Theoretical and practical familiarization of students with the principles, possibilities and basic procedures of coal processing.

**Learning outcomes:** Ability to independently choose the scheme of the technological process of coal processing, both integrally and by individual stages of the process, based on the characteristics of different types of raw coal.

# **Course description:**

**Lectures:** Introduction. Coal: origin, basic characteristics, classification. Technical and elemental analysis of coal. Production, purpose and use of coal. Market requirements. Coal processing technologies. Theoretical basis of the process of gravity (in heavy medium, water and air) and flotation concentration of coal. Industrial processes of mine coal processing: crushing, sieving, grading, manual selection, gravity concentration (in heavy medium, water and air) and flotation concentration. Technological schemes of mine coal processing. Balance of coal preparation and concentration. Optimization and control of coal preparation and concentration processes. Predetermination of industrial results of coal preparation and concentration Theoretical basics of briquetting and pelleting. Technologies of briquetting and pelletizing. Devices for briquetting and pelletizing coal. Coal refining: drying, coking and semi-coking, gasification and liquefaction of coal.

**Practice:** Analysis of technological schemes of the processing of different types of raw coal in our country and in the world. Creation of technological schemes based on the given characteristics of raw coal.

Determination of the material balance of technological schemes.

# Literature:

Recommended:

1. Ignjatović, M., Milanović, D., Magdalinović, S., Urošević, D. (2011). Coal - industrial preparation and cleaning technologies. Copper Institute, Bor.

2. Draškić, D. (1975). Industrial application of the preparation of mineral raw materials, Book I, Student Publishing and Information Center, Belgrade.

3. Meyers, RA, Laskowski, JS, Walters, AD (2003). Coal preparation. In RA Meyers (Ed.), The encyclopedia of physical science and technology (pp. 79–106). San Diego: Academic Press. (electronic edition)

4. Nikolić P., Dimitrijević D., (1990). Coal of Yugoslavia, Invention, Belgrade.

5. Pantić, N., Nikolić, P. (1973). Ugalj, Naučna kljiga, Belgrade.

|  | Number of classes per week | Lectures: 2 | Practical classes: 2 | Study research work: | Other forms of teaching: |
|--|----------------------------|-------------|----------------------|----------------------|--------------------------|
|--|----------------------------|-------------|----------------------|----------------------|--------------------------|

#### **Teaching methods**

Teaching is conducted in the form of lectures and practical in the form of interactive exercises with the active participation of students and preparation of a term paper.

#### Knowledge evaluation (maximum 100 points)

| Isnowicuze evaluation (maximum | i i oo pointes) |                                |        |
|--------------------------------|-----------------|--------------------------------|--------|
| Pre-examination obligations    | Points          | Final exam                     | Points |
| Lecture attendance             | 10              | Written part of the final exam |        |
| Exercise attendance            | 10              | Oral part of the final exam    | 50     |
| Coloquium exam/s               | 1               |                                |        |
| Term paper                     | 30              |                                |        |

Course: INDUSTRIAL WASTEWATER TREATMENT

Lecturer/s: Dr Grozdanka Bogdanović, Full Professor

Status of the course: Elective for module MP

ECTS: 6

Prerequisite: Acquired knowledge from course Wastewaters in Mineral and Recycling Technologies.

**Course goals:** Introducing students with industrial wastewater generated in mining (ore deposits of mineral raw materials and mineral processing plant) and technologies for their purification

**Learning outcomes:** Obtaining the necessary engineering knowledge on modern technologies of processing industrial wastewater.

# **Course description:**

Lectures: The origin and quantities of industrial wastewater. Characterization of waste water. Requirements for the degree of wastewater treatment - legal regulations, treatment options. Industrial wastewater treatment. Physical (mechanical) procedures: clarification, settling, filtration. Chemical methods (neutralization, precipitation, oxidation, reduction). Physico-chemical methods (coagulation, flocculation, flotation, adsorption, ion exchange, extraction. Membrane processes. Biological methods (biological filtration, activated sludge, aeration lagoons, anaerobic processes). Sludge treatment and disposal. Examples of industrial wastewater treatment lines.

Practice: Study and interpretation of technology and scheme of technological processes

#### Literature:

1. R. Aćić, N. Magdalinović, M. Trumić, LJ. Šutulović, Dewatering and Tailing (in Serbian), Science, Belgrade, 2001 (Selected chapters)

2. M. Dimitrijević, Oxidation of pyrite and acid mine water (in Serbian), TF Bor, 2013.

3. M. Dimitrijević, S.Milić, Sulphide mining waste. Characteristics, environmental impact and treatment (in Serbian), TF Bor, 2017. (Selected chapters).

4. C. Forster, Wastewater Treatment and Technology, London, 2003.

5. F. Habashi, A Textbook of Hydrometallurgy, Metallurgie Extective Quebec, Enr., 1992 (Selected chapters)

| Number of classes per week                | Lectures: 2 Practical classes: 2 |                  |                    | 2      |  |
|-------------------------------------------|----------------------------------|------------------|--------------------|--------|--|
| Teaching methods: Lectures, practis       | e and practical work             | with interactive | work with students |        |  |
| Knowledge evaluation (maximum 100 points) |                                  |                  |                    |        |  |
| Pre-examination obligations               | Points                           | Final exam       |                    | Points |  |
| Lecture attendance                        | 10                               | Written part of  | the final exam     |        |  |
| Exercise attendance                       | 10                               | Oral part of the | final exam         | 50     |  |
| Term paper                                | 30                               |                  |                    |        |  |

Course: Design and management of municipal landfill

Lecturer/s: PhD. Jovica M. Sokolović, full professor

# Status of the course: Elective course on RTiOR module

# ECTS: 6

Prerequisite: Acquired knowledge at undergraduate academic studies

**Course goals:** Acquaintance of students with the technologies and equipment used for the construction and management of municipal landfills.

**Learning outcomes:** The ability of the student to make qualified decisions on the choice of technology and equipment for the construction and management of municipal landfills.

# **Course description:**

**Lectures:** Introductory remarks. Historical development, significance, condition and trends in the field of municipal landfills. Basic concepts and terms. Standards and legislation in the field of design and waste management. Types and classification of waste. Municipal waste. Influential parameters and bases for design. Selection of macro and micro locations. Collection and treatment of municipal waste before disposal. Technologies for municipal waste disposal and construction of landfills. Closure and reclamation. Collection and treatment of waste water and landfill gas. Machines and devices. Management of municipal landfills. Examples of bad and good practice.

**Practice:** Preparation of a term paper related to the municipal landfill and its management, with the calculation of basic technological and economic parameters..

# Literature:

Recommended:

1. Knežević, D., Torbica, S., Rajković, Z., Nedić, M., (2014). Disposal of industrial waste, Faculty of Mining and Geology, Belgrade.

2. Ilić, M.R., Miletić, S.R., (1998). Basics of solid waste management. Institute for Materials Testing, Belgrade.

3. Vujić, G., Dubavin, D., Stanisavljević, N., Batinić, B., (2012). Waste management in developing countries, Faculty of Technical Sciences, Novi Sad.

4. Nešić, B., (2010). Municipal waste management and potential for recycling in southern and southeastern Serbia, Center for the Development of Civil Society, Niš.

5. Žikić, M., Sokolović, J., (2018). Landfill design (authorized lectures), University of Belgrade, Faculty of Engineering, Bor.

6. Additional literature recommended by the lecturer.

|  | Number of classes per week | Lectures: 2 | Practical classes: 2 | Study research work: | Other forms of teaching: |
|--|----------------------------|-------------|----------------------|----------------------|--------------------------|
|--|----------------------------|-------------|----------------------|----------------------|--------------------------|

# Teaching methods

Teaching is conducted in the form of lectures and auditory exercises with an effort to involve the students as much as possible, i.e. to be interactive. This is realized directly in classes or in the form of presentations, which have been previously prepared by a team of students or individually. In the lectures, the theoretical part of the material is presented with constant illustration with characteristic examples from practice. During the exercises, specific cases are analyzed and instructions are given regarding the preparation of the term paper. Teaching and exercises are intensively supported by Moodle platform. Engagement of students in lectures and exercises, as well as prepared term paper, are scored as pre-exam activities.

# Knowledge evaluation (maximum 100 points)

| introvicuge evaluation (maximum | i i i vo pomus) |                                |        |
|---------------------------------|-----------------|--------------------------------|--------|
| Pre-examination obligations     | Points          | Final exam                     | Points |
| Lecture attendance              | 10              | Written part of the final exam |        |
| Exercise attendance             | 10              | Oral part of the final exam    | 60     |
| Coloquium exam/s                | /               |                                |        |
| Term paper                      | 20              |                                |        |

**Course: Recycling of metals and metal waste** 

Lecturer/s: PhD. Jovica M. Sokolović, full professor

Status of the course: Elective course on RTiOR module

ECTS: 6

Prerequisite: Acquired knowledge at undergraduate academic studies

**Course goals:** Theoretical and practical familiarization of students with the principles, possibilities and basic procedures of metal and metal waste recycling.

**Learning outcomes:** Acquisition of engineering knowledge necessary for further training in the field of metal recycling and metal waste.

# **Course description:**

**Lectures:** Introduction. Sources, types and composition of waste. Life cycle of metals and metal waste. Collection, sorting and preparation of metal and metal waste for recycling. Copper and waste copper recycling technologies and procedures. Technologies and procedures of aluminum and scrap aluminum recycling. Technologies and procedures for recycling lead and waste lead. Technologies and procedures of zinc and waste zinc recycling. Technologies and procedures of iron and scrap iron recycling. Rare metals recycling technologies and procedures. Technological indicators and material balances of metal and metal waste recycling processes. Contemporary trends in the field of metal recycling and metal waste. Economic and ecological aspects of metal and metal waste recycling.

**Practice:** Practical classes are conducted according to the program of theoretical classes and include the analysis of technological schemes of the recycling process of various types of metals and metal waste in our country and in the world, as well as calculation exercises (determining the material balance of technological schemes; technological indicators and process control).

### Literature:

Recommended:

1. Hodolic, J., Vukelic, Đ., Hadžistević, M. Budak, I. Badida, M. Shoosh, Lj. Kosec, B. Bosak, M. (2011). Recycling and recycling technologies, Faculty of Technical Sciences, Novi Sad.

2. Worrell, E., Reuter, M. (Eds.). (2014). Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists. Newnes. (selected chapters)

3. Ristic, M. Vuković, M., (2006). Solid waste management, solid waste processing and disposal technologies, Technical Faculty in Bor, Bor.

4. Trumic, M. Andrić, Lj. Trumic, M., (2014). Waste management and treatment, Technical Faculty in Bor, Bor. (selected chapters)

5. Ilić, M.R., Miletić, S.R., (1998). Basics of solid waste management. Institute for Materials Testing, Belgrade.

| Number of classes per week | Lectures: 2 | Practical classes: 2 | Study research work: | Other forms of teaching: |
|----------------------------|-------------|----------------------|----------------------|--------------------------|
| Too shine motheda          |             |                      |                      |                          |

#### Teaching methods

Teaching is conducted in the form of lectures and practical in the form of interactive exercises with the active participation of students and preparation of a term paper.

#### Knowledge evaluation (maximum 100 points) **Pre-examination obligations** Points Points **Final exam** Written part of the final exam Lecture attendance 10 Exercise attendance 10 Oral part of the final exam 50 Coloquium exam/s 1 30 Term paper

Course: Recycling of non-metallic waste

Lecturer: PhD Zoran Štirbanović, Associate Professor

Status of the course: Elective for module RTSD

#### ECTS: 6

#### Prerequisite: none

**Course goals:** Introducing students with basic technological processes applied for non-metallic waste recycling, as well as the most modern trends in this field.

**Learning outcomes:** Theoretical and practical training of students for the independent creation of technological processes for non-metallic waste recycling, as a prerequisite for work in scientific, educational and economic organizations dealing with this issue.

## **Course description:**

# Lectures:

Introduction. Industrial processes for separation and recycling of non-metallic waste. Comminution processes (crushing, grinding, shredding). Classification processes (sieving and classification). Concentration processes (flotation, gravity concentration, magnetic concentration, electric concentration, etc.). Application of preparation and concentration processes in non-metallic waste recycling technologies: plastic, paper, glass, wood, textile, rubber. Technological indicators and control of industrial processes. Material balances of processes. Contemporary trends in the field of non-metallic waste recycling.

#### Practice:

Practical work is conducted according to the program of theoretical lectures and include the creation of technological process schemes for recycling different types of non-metallic waste, as well as calculation exercises (determining the material balance of technological schemes; technological indicators and process control).

#### Literature:

Recommended:

1. J. Hodolič, Đ. Vukelić, M. Hadžistević, I. Budak, M. Badida, Lj. Šooš, B. Kosec, M. Bosak, Recycling and recycling technologies, Faculty of Technical Sciences, Novi Sad, 2011. (*In Serbian*)

Ancillary:

- 1. P. Bajpai, Recycling and Deinking of Recovered Paper, Elsevier, 2014.
- 2. M. Forrest, Recycling and Re-use of Waste Rubber, A Smithers Group Company, Shrewsbury, UK, 2014.

| Number of classes per week | Lectures: 2 | Practical classes: 2 | Study research<br>work: | Other<br>forms of<br>teaching: |
|----------------------------|-------------|----------------------|-------------------------|--------------------------------|
|----------------------------|-------------|----------------------|-------------------------|--------------------------------|

# **Teaching methods**

Lectures include interactive work with students, practical work through example analysis and computational exercises. Pre-exam knowledge check through one colloquium and one term paper.

| Knowledge evaluation (maximum 100 points) |        |                                |        |  |  |
|-------------------------------------------|--------|--------------------------------|--------|--|--|
| Pre-examination obligations               | Points | Final exam                     | Points |  |  |
| Lecture attendance                        | 15     | Written part of the final exam |        |  |  |
| Exercise attendance                       | 15     | Oral part of the final exam    | 50     |  |  |
| Coloquium exam/s                          | 10     |                                |        |  |  |
| Term paper                                |        |                                |        |  |  |

**Course: Thermal treatment of waste** 

Lecturer/s: PhD Zoran Štirbanović, Associate Professor; PhD Zoran Stević, Full Professor

Status of the course: Elective for module RTSD

ECTS: 6

Prerequisite: none

**Course goals:** Introducing students with theoretical and practical principles of thermal treatment of waste in order to obtain different types of energy.

**Learning outcomes:** Theoretical and practical training for work in scientific, educational and economic organizations dealing with this issue.

#### **Course description:**

*Lectures*: Introduction to thermodynamics. Work and heat. Heat capacity. The first law of thermodynamics. The second law of thermodynamics. Combustion. The heating power of the fuel. Composition and amount of combustion products. Gases and vapors. Legal regulations on the types of waste for which thermal treatment is carried out. Conditions and criteria for determining the location, technical and technological conditions for the design, construction, equipment and operation of thermal treatment facilities. Dealing with the residue after thermal treatment. Technologies for thermal treatment of waste. Incineration. Pyrolysis. Gasification. Plasma process. Modern technologies for thermal treatment of waste.

*Practice*: Practical work is conducted according to the program of theoretical lectures and include analyzes of various examples and computational exercises.

# Literature:

Recommended:

- 1. J. Đoković, Thermodynamics, Technical Faculty in Bor, Bor, 2013. (In Serbian)
- 2. B. D. Đorđević, V. J.Valent, S. P. Šerbanović, Thermodynamics with thermotechnics, Faculty of Technology and Metallurgy, Belgrade, 2007. (*In Serbian*)
- 3. R. Šelmić, Technical thermodynamics, Scientific book, Belgrade, 1995. (In Serbian)
- 4. Law on Waste Management, Official Gazette of the Republic of Serbia. (In Serbian)
- 5. Regulation on types of waste for which thermal treatment is carried out, conditions and criteria for determining the location, technical and technological conditions for the design, construction, equipment and operation of facilities for thermal treatment of waste, handling of the residue after incineration, Official Gazette of the Republic of Serbia, no. . 102 of December 30, 2010, 50 of May 18, 2012. (*In Serbian*)
- 6. M. Ristić, M. Vuković, Solid waste management solid waste processing and disposal technologies, Technical Faculty in Bor, Bor, 2006. (*In Serbian*)
- 7. M. Ž. Trumić, Lj. Andrić, M. S. Trumić, Waste management and treatment, Technical Faculty in Bor, Bor, 2014. (In Serbian)

Ancillary:

Forbes R. McDougall, Peter R. White, Marina Franke, Peter Hindle, Integrated Solid Waste Management

 A Life Cycle Inventory 2nd Edition, Blackwell Science, Oxford, 2003.

| Number of classes per week | Lectures: 2 | Practical classes: 2 | Study research work: | Other<br>forms of<br>teaching: |
|----------------------------|-------------|----------------------|----------------------|--------------------------------|
|                            |             |                      |                      |                                |

### **Teaching methods**

Lectures include interactive work with students, practical work through example analysis and computational exercises. Pre-exam knowledge check through one colloquium and one term paper.

| Knowledge evaluation (maximum 100 points) |                                   |                                       |        |  |  |
|-------------------------------------------|-----------------------------------|---------------------------------------|--------|--|--|
| Pre-examination obligations               | Points                            | Final exam                            | Points |  |  |
| Lecture attendance                        | 15 Written part of the final exam |                                       |        |  |  |
| Exercise attendance                       | 15                                | Oral part of the final exam <b>50</b> |        |  |  |
| Coloquium exam/s                          | 10                                |                                       |        |  |  |

| Term paper | 10 |  |
|------------|----|--|
|            |    |  |

| Study program: | Mining | Engine | ering |
|----------------|--------|--------|-------|
|----------------|--------|--------|-------|

Course: CHEMICAL AND BIOLOGICAL TREATMENT OF WASTE

Lecturer/s: Dr Grozdanka Bogdanović, Full Professor

Status of the course: Elective for module RTSD

ECTS: 6

Prerequisite: Required knowledge in the field of waste management

**Course goals:** Introducing students with chemical and biological treatment of waste, as well as the application of acquired knowledge in choose the most favorable technology for waste treatment

**Learning outcomes:** Theoretical and practical training of students for work in educational and scientific research institutions, state and economic organizations engage in this issue.

# **Course description:**

Lectures: Introduction. Sources, types and composition of waste. Physical, chemical and biological properties of waste. Chemical treatment: Basics of the chemical process. Hydrolysis. Neutralization. Chemical deposition. Oxidation processes. Reduction processes. Electrochemical processes.

Biological treatment: Basics of the biological treatment process. Types of microorganisms. **Necessary** conditions for the biological decomposition. Aerobic composting. Anaerobic digestion. Waste transformation, energy utilization and obtaining useful products.

Practice: Analysis of specific examples of chemical and biological waste treatment technologies, with an emphasis on its transformation into useful products

#### Literature:

1. M. Ristić, M. Vuković, Solid Waste Management, Solid Waste Processing Technology (in Serbian), TF Bor, 2006.

2. M.Trumić, Lj.Andrić, M.Trumić, Management and Treatment of Waste (in Serbian), TF Bor, 2014 (Selected chapters)

 Forbes R. McDougall, Peter R. White, Marina Franke, Peter Hindle, Integrated Solid Waste Management - A Life Cycle Inventory 2nd Edition, Blackwell Science, Oxford, 2003. (Selected chapters)
 P. Fečko, M. Kušnierova, V. Čablik, I. Pečtova, Environmental Biotechnology, VŠB-Technical University of Ostrava, Ostrava, 2006.

| Number of classes per week                        | Lectures: 2 | Practical classes: 2           |  |  |  |  |
|---------------------------------------------------|-------------|--------------------------------|--|--|--|--|
| Teaching methods: Lectures, exercises, term paper |             |                                |  |  |  |  |
| Knowledge evaluation (maximum 100 points)         |             |                                |  |  |  |  |
| Pre-examination obligations                       | Points      | Final examPoints               |  |  |  |  |
| Lecture attendance                                | 5           | Written part of the final exam |  |  |  |  |
| Exercise attendance                               | 10          | Oral part of the final exam 55 |  |  |  |  |
| Term paper                                        | 30          |                                |  |  |  |  |

## Course: STUDY RESEARCH WORK ON THEORETICAL BASIS OF THE MASTER THESIS

Lecturer/s: Dr Milan Trumić, Full Professor, Dr Mira Cocić, Full Professor, Dr Maja Trumić, Associate Professor

Status of the course: Obligatory subject

**ECTS:** 6

Prerequisite: Acquired knowledge through obligatory and elective subjects of the curriculum

**Course goals:** Acquiring knowledge for identifying and analyzing problems, finding solutions, presenting research results in the form of work and public presentation

Learning outcomes: Students are trained to independently identify problems, search literature, make conclusions and presentations

#### **Course description:**

*Theoretical teaching:* Getting acquainted with libraries and databases that contain scientific literature. Access and methods of searching library literature and literature on the Internet. Literature processing and citation literature. Processing of survey results using software packages for diagram processing, tables and images. Structure of master work. Methods for preparing a public presentation of the master's work.

*Practical classes-exercises:* Accessing and searching databases with specific examples. Processing concrete research results using software packages. Preparing the presentation.

# Literature

Recommended:

1. M. Vuković, Ž. Živković, Methodology of scientific research work, Grafožig, Beograd, 2005. Ancillary:

1. Databases of scientific journals on the Internet.

| Number of classes per week                                                                                    | Lectures: 2 | Practical classes: |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-------------|--------------------|--|--|--|--|
|                                                                                                               |             | 2                  |  |  |  |  |
| Teaching methods: Theoretical lectures are conducted with lectures and practical in the form of demonstration |             |                    |  |  |  |  |
| exercises with the active participation of students and elaboration of the reports.                           |             |                    |  |  |  |  |

| Knowledge rating (max. number of points 100)    |    |                                |    |  |  |
|-------------------------------------------------|----|--------------------------------|----|--|--|
| Pre-examination points Final examination points |    |                                |    |  |  |
| obligations                                     |    |                                |    |  |  |
| Lecture attendance                              | 10 | Written part of the final exam |    |  |  |
| Exercise attendance                             | 10 | Oral part of the final exam    | 50 |  |  |
| Seminars                                        | 30 |                                |    |  |  |

# **Course: Professional Practice**

Lecturer/s: PhD. Jovica M. Sokolović, full professor, PhD. Saša Stojadinović, associate professor Status of the course: Compulsory for Mining Engineering

ECTS: 4

**Prerequisite:** Passed the first semester

**Course goals:** The aim of the Professional Practice of master's academic studies is to familiarize students with the individual stages of the production process in the chosen organization in accordance with the optional module of the study program.

**Learning outcomes:** Training students for the practical application of previously acquired theoretical knowledge in solving specific industrial problems in the company where the internship is carried out and in similar companies. In addition to practical knowledge, students gain experience in presentation, analysis of results, finding solutions and giving conclusions. The ultimate outcome of the professional practice of the master's academic studies is the training of students for the future independent preparation of the master's thesis.

# **Course description:**

**Lectures:** Professional practice is a form of teaching in which students acquire broader practical knowledge, skills and abilities. Professional practice takes place in the second semester and is a mandatory part of the study program. The student chooses an organization from the state, private or public sector, independently or with the help of the Professional Practice manager, in which he will perform the professional practice in the Republic of Serbia. The content of Professional Practice is different for students of individual modules of the Mining Engineering study program. The Professional Practice of the corresponding module of the Mining Engineering study program and the specifics of the technological process of the company where the internship is carried out. After the completed Professional Practice, and based on the student's report and the confirmation of the responsible person who confirms with the Organization's signature and seal that the internship has been completed, the Professional Practice Manager verifies the completed Professional Practice.

Practice: Writing Professional Practice report.

# Literature:

1. Technical documentation from the plant industry

| Number of classes per week | Lectures: 0 | Practical classes: 6 | Study research work: | Other forms of teaching: |
|----------------------------|-------------|----------------------|----------------------|--------------------------|
| Tee alting models alg      |             |                      |                      |                          |

# **Teaching methods**

After completing the Professional Practice, the student hands over three copies of the Professional Practice report to the teacher-coordinator. The teacher-coordinator of the professional practice examines the written elaboration of the professional practice and confirms with his signature in the index that the student has successfully completed it, which allows the student to certify the second semester of master's academic studies with other signatures.

## Knowledge evaluation (maximum 100 points)

| Knowledge evaluation (maximum 100 points) |        |                                |    |  |  |
|-------------------------------------------|--------|--------------------------------|----|--|--|
| <b>Pre-examination obligations</b>        | Points | <b>Final exam</b> Points       |    |  |  |
| Lecture attendance                        | 25     | Written part of the final exam |    |  |  |
| Exercise attendance                       | 1      | Oral part of the final exam    | 50 |  |  |
| Coloquium exam/s                          | 1      |                                |    |  |  |
| Term paper (report)                       | 25     |                                |    |  |  |

Course: MASTER`S THESIS

Lecturers: All professors on study program are potential mentors

Status of the course: Compulsory for the study program

# ECTS: 4

Prerequisite: Completed first semester on the study program Mining Engineering at master academic studies

**Course goals:** Preparing of students for completely independent research work after completing the master's degree study, expanding already acquired theoretical and practical knowledge as a good basis for later improvement in doctoral academic studies.

**Learning outcomes:** Practical application of acquired knowledge for independent scientific-research work and the creation of a master's thesis.

#### **Course description:**

The master's thesis is the result of the student's independent research work, which systematizes and applies scientific and professional knowledge in order to solve specific problems in the field of mining engineering. The student proves the ability to solve problems, originality in approach, ability to draw appropriate conclusions by the Master's thesis, as well as the ability to present a specific subject to the professional public. The master's thesis must be in the field of the elective module that the student enrolled. The candidate, under the guidance of a mentor, during the second semester performs study research related to the topic of the master's thesis, that is, prepares the theoretical basis for the preparation of the master's thesis. The student acquires the theoretical and practical phases of scientific research methods and searches available literature databases (KOBSON, SCOPUS, SCIENCE DIRECT, etc.). The student has a higher degree of independence during using the appropriate devices, equipment and software. The mentor guides the candidate and provides assistance in all phases of the research, through: choosing the subject of the master's thesis, formulating the title of the thesis, goal of the thesis, scientific and engineering methods, ways of solving it, approaching the problem, choosing the way to process the problem, experimental work and data collection.

# Literature:

| Number of classes per week | Lectures: | Practical classes: | Study research<br>work: 8 | Other<br>forms of<br>teaching: |
|----------------------------|-----------|--------------------|---------------------------|--------------------------------|
|----------------------------|-----------|--------------------|---------------------------|--------------------------------|

**Teaching methods** 

Mentoring work. Laboratory and field research. Independent preparation of individual chapters of the master's thesis in accordance with the content and plan and program of the chosen topic.

| Knowledge evaluation (maximum 100 points) |        |                                |        |  |  |
|-------------------------------------------|--------|--------------------------------|--------|--|--|
| Pre-examination obligations               | Points | Final exam                     | Points |  |  |
| Lecture attendance                        | 25     | Written part of the final exam |        |  |  |
| Exercise attendance                       | 25     | Oral part of the final exam 50 |        |  |  |
| Coloquium exam/s                          |        |                                |        |  |  |
| Term paper                                |        |                                |        |  |  |

# Course: PREPARATION AND DEFENDING OF MASTER'S THESIS

Lecturers: All professors on study program are potential mentors

Status of the course: Compulsory for the study program

# ECTS: 4

**Prerequisite:** All exams passed on the study program Mining Engineering at master academic studies and completed professional practice

**Course goals:** The goal of the master's thesis is that the student independently process a certain scientific or practical problem, through theoretical analysis, experimental research and analysis of the achieved results.

**Learning outcomes:** Through the written presentation of the master's thesis and its public defense, the student demonstrates the ability to apply theoretical knowledge and practical skills in future engineering practice. Students are also capable for education at doctoral academic studies.

#### **Course description:**

The master's thesis represents the independent research work of students in narrower scientific and professional fields, mining, mineral processing and recycling technology and sustainable development. The content of the master's thesis is different for each student individually, aligned with the specifics of all three modules of the Mining Engineering study program. Mentor for the preparation and defense of the master's thesis is determined in accordance with the module of the study program. The student, in consultation with the mentor, independently creates the research program of his master's thesis in order to solve the tasks given to him. The candidate independently prepares individual parts of the master's thesis with the goal of sublimation of acquired knowledge in the study program. The results of the research should presented in the following form: introduction, theoretical part, experimental part, results with discussion, conclusion and literature. Final form of master's thesis the student submits three copies to the Faculty, after which the thesis is publicly defended in front of a three-member commission formed by teachers of this study program.

#### Literature:

Relevant literature in the field of mining engineering in paper and electronic form.

| Number of classes per week | Lectures: | Practical classes: | Study research<br>work: | Other<br>forms of<br>teaching:<br>4 |
|----------------------------|-----------|--------------------|-------------------------|-------------------------------------|
|----------------------------|-----------|--------------------|-------------------------|-------------------------------------|

# **Teaching methods**

Mentoring and independent work of students in accordance with the chosen topic of the master's thesis. Laboratory research. After the mentor's approval of the finished work, the student defences master's thesis to a three-member commission. At the defense of the Master's thesis, the student must demonstrate that he has knolege of the subject matter from which he is defending the thesis, justify the conclusions and findings he has reached and defend them.

#### Knowledge evaluation (maximum 100 points)

| Pre-examination obligations | Points | Final exam         Points      |    |
|-----------------------------|--------|--------------------------------|----|
| Lecture attendance          |        | Written part of the final exam | 50 |
| Exercise attendance         |        | Oral part of the final exam    | 50 |
| Coloquium exam/s            |        |                                |    |
| Term paper                  |        |                                |    |